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We consider decay of metastable states of forced vibrations of a quantum oscillator close to the bifurcation
points where the states disappear. Decay occurs via quantum activation over a quasienergy barrier, a mecha-
nism that differs from both tunneling and thermal activation. The decay probability W scales with the distance
� to the bifurcation point as �ln W����. The exponent � is found for a resonantly driven oscillator and an
oscillator modulated at nearly twice its eigenfrequency.
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Decay of a metastable state is usually considered as re-
sulting from tunneling or thermal activation. In this paper we
study a different decay mechanism, quantum activation. It
relates to periodically modulated systems. As tunneling,
quantum activation is due to quantum fluctuations, but as
thermal activation, it involves diffusion over an effective bar-
rier separating the metastable state. It is often more probable
than tunneling even for T→0.

Metastable decay of vibrational states in modulated sys-
tems has attracted much attention recently. Such diverse sys-
tems as trapped electrons and atoms �1,2�, Josephson junc-
tions �3�, and nano- and micromechanical oscillators �4,5�
have been studied. The experiments largely focused on the
parameter range where the system was close to a bifurcation
point in which the metastable state disappears. In this range
the decay probability is comparatively large and displays
characteristic scaling with the distance to the bifurcation
point. So far classical activation was studied, but recently
quantum regime has been also reached �6�.

For classical systems, scaling of the rate of activated de-
cay near a bifurcation point was found theoretically both in
the cases of equilibrium �7–9� and nonequilibrium systems
�10–12�. In the latter case a scaling crossover may occur as
the system goes from the underdamped to overdamped re-
gime while approaching the bifurcation point �13�. Such
crossover is well known also for quantum tunneling in equi-
librium dissipative systems �14�.

In this paper we study decay of metastable vibrational
states in dissipative systems close to bifurcation points,
where the motion becomes overdamped. The analysis refers
to the systems of current interest, Josephson junctions in par-
ticular, which can be modeled by quantum oscillators driven
by a resonant force or parametrically modulated at nearly
twice the eigenfrequency. We show that at low temperatures
decay occurs via quantum activation, not via tunneling. The
decay rate W scales with the distance to the bifurcation point
� as �ln W ����. The scaling exponent is �=3/2 for resonant
driving, and �=2 for parametric modulation; in addition,
�ln W� displays a characteristic temperature dependence.

Quantum activation in periodically modulated systems
can be understood by noting that metastable states are
formed as a result of the balance between external driving
and dissipation due to coupling to a thermal bath. Dissipation
corresponds to transitions to lower energy states with emis-
sion of excitations of the bath. Because energy of modulated
systems is not conserved even without dissipation, it is more

convenient to describe them by the Floquet �quasienergy�
states rather than the energy eigenstates. Emission of bath
excitations may result in transitions to both higher and lower
quasienergies, albeit with different probabilities �15,16�. The
higher-probability transitions lead to relaxation toward a
metastable state, whereas the lower-probability transitions
lead to effective diffusion away from it, a finite-width distri-
bution over quasienergy, and metastable decay even for
T→0. There is a similarity here with the Unruh effect �17�
where a uniformly accelerated relativistic detector coupled to
a quantum zero-temperature field is described in its proper
time by the Gibbs distribution with the acceleration-
dependent temperature.

We will start with a resonantly driven nonlinear oscillator.
Its Hamiltonian is

H0�t� =
1

2
p2 +

1

2
�0

2q2 +
1

4
�q4 − qA cos��Ft� . �1�

In the presence of weak damping the oscillator may have two
coexisting stable states of classical forced vibrations �18�.
They emerge already for a small modulation amplitude A
provided the detuning ��=�F−�0 of the modulation fre-
quency �F from the oscillator eigenfrequency �0 is small,
������F. We assume that the nonlinearity is small, ����q2�
��0

2, and that ���	0, which is necessary for the bistabil-
ity; for concreteness we set �	0.

It is convenient to switch from q, p to slowly varying
operators Q, P using a transformation q=Cres�Q cos �Ft
+ P sin �Ft�, p=−Cres�F�Q sin �Ft− P cos �Ft� with Cres

= �8�F�� /3��1/2. The variables Q, P are the scaled coordi-
nate and momentum in the rotating frame,

�P,Q� = − i
, 
 = 3��/8�F
2�� . �2�

The parameter 
 plays the role of the effective Planck con-
stant. We are interested in the semiclassical case; 
 is the
small parameter of the theory, 
�1.

In the rotating wave approximation the Hamiltonian �1�
becomes H0= �� /
���ĝ, with

ĝ � g�Q,P� =
1

4
�Q2 + P2 − 1�2 − �1/2Q ,
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� = 3�A2/32�F
3����3 �3�

�in the case �, ��
0 one should replace ĝ→−ĝ,
H0→−�� /
���ĝ�. Operator ĝ plays the role of the oscillator
Hamiltonian in dimensionless time �= t����. The eigenvalues
of ĝ give oscillator quasienergies.

The parameter � in Eq. �3� is the scaled intensity of the
driving field. For weak damping the oscillator is bistable
provided 0
�
4/27. In this range the function g�Q , P� has
a shape of a tilted Mexican hat. The maximum at the top of
the central dome and the minimum at the lowest point of the
rim correspond, respectively, to the small- and large-
amplitude states of forced vibrations. The saddle point of g
corresponds to the unstable periodic state of the oscillator.

We will consider two major relaxation mechanisms of the
oscillator: damping due to coupling to a thermal bath and
dephasing due to oscillator frequency modulation by an ex-
ternal noise. Usually the most important damping mecha-
nism is transitions between neighboring oscillator energy
levels. They result from the coupling linear in the oscillator
coordinate. Since the energy transfer is 	��0, in the rotating
frame the transitions look instantaneous. We will assume that
the correlation time of the noise that modulates the oscillator
frequency is also short compared to 1/ ����, so that the noise
is effectively � correlated in slow time �. Then the quantum
kinetic equation is Markovian in the rotating frame,

�̇ � ��� = i
−1��, ĝ� − �̂� − �̂ph� , �4�

where �̂� describes damping,

�̂� = �����−1��n̄ + 1��â†â� − 2â�â† + �â†â�

+ n̄�ââ†� − 2â†�â + �ââ†�� , �5�

and �̂ph� describes dephasing,

�̂ph� = �ph����−1
†â†â,�â†â,��‡ . �6�

Here, � and �ph are the damping and dephasing rates, â
= �2
�−1/2�Q+ iP� is the lowering operator, and n̄
= �exp���0 /kT�−1�−1 is the oscillator Planck number. In
what follows we use dimensionless parameters

� = ����/�, �ph = �ph/
� . �7�

We assume that �ph�1. This means that the dephasing fluc-
tuations intensity may be comparable to the intensity of
quantum fluctuations associated with damping, which is
�
�, see below, but that �ph��.

The distribution � was studied earlier for additively and
parametrically driven oscillators at T=�ph=0 where there is

detailed balance �19–21�, and the lowest eigenvalue of �̂ was
studied numerically �22�. However, the T=�ph=0 solution is
fragile. It can change exponentially strongly already for ex-
tremely small T, �ph �15,16�. The analysis �15,16� revealed
the mechanism of quantum activation over a quasienergy
barrier, but the results referred to the case where the
damping-induced broadening of quasienergy levels is small
compared to the typical interlevel distance. This condition
necessarily breaks sufficiently close to a bifurcation point
where the level spacing becomes small as a consequence of

the motion slowing down. Therefore the analysis should be
done differently. It is simplified in the Wigner representation,

�W�Q,P� =
 d�e−i�P/
��Q +
1

2
�,Q −

1

2
�� , �8�

where ��Q1 ,Q2�= �Q1���Q2� is the density matrix in the co-
ordinate representation. Using Eqs. �2�–�8� one can write the
equation for �W as a sum of terms proportional to different
powers of 
,

�̇W = − ��K�W� + 
L̂�1��W + 
2L̂�2��W, �9�

where K= �KQ ,KP� and �= ��Q ,�P�. Vector K determines the
evolution of the density matrix in the absence of quantum
and classical fluctuations,

KQ = �Pg − �−1Q, KP = − �Qg − �−1P . �10�

This evolution corresponds to classical motion

Q̇ = KQ, Ṗ = KP. �11�

The condition K=0 gives the values of Q, P at the stationary
states of the oscillator in the rotating frame.

The term L̂�1� in Eq. �9� describes classical and quantum
fluctuations due to damping and dephasing,

L̂�1� = �−1
�n̄ +
1

2
��2 + �ph�Q�P − P�Q�2� . �12�

These fluctuations lead to diffusion in �Q , P� space, as seen

from the structure of L̂�1�.

The term L̂�2� in Eq. �9� describes quantum effects for an
isolated oscillator, including tunneling,

L̂�2� = −
1

4
�Q�P − P�Q��2. �13�

In contrast to L̂�1�, it contains third derivatives. Generally the

term 
2L̂�2��W is not small, because �W varies on distances
�
. This complicates using the Wigner representation to de-
scribe oscillator dynamics �22�. However, near a bifurcation

point the term �L̂�2� is small, see below. This major simpli-
fication allows solving Eq. �9�, thus making the Wigner rep-
resentation advantageous.

From Eqs. �10� and �11�, for given reduced damping �−1

the oscillator has two stable and one unstable stationary state
in the rotating frame �periodic states of forced vibrations� in
the range �B

�1����
�
�B
�2���� and one stable state outside

this range �18�, with

�B
�1,2� =

2

27
�1 + 9�−2 � �1 − 3�−2�3/2� . �14�

At �B
�1� and �B

�2� the stable states with large and small vibra-
tion amplitudes, respectively, merge with the saddle state
�saddle-node bifurcation�. The corresponding values of
Q, P are QB=�B

−1/2YB�YB−1�, PB=�B
−1/2�−1YB, where

YB=QB
2 + PB

2 ,
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YB
�1,2� =

1

3
�2 ± �1 − 3�−2�1/2� . �15�

In the absence of fluctuations the dynamics of a classical
system near a saddle-node bifurcation point is controlled by
one slow variable �23�. In our case it can be found by ex-
panding KQ,P in �Q=Q−QB, �P= P− PB, and the distance to
the bifurcation point �=�−�B. The function KP does not
contain linear terms in �Q, �P. Then, from Eq. �11�, P
slowly varies in time for small �Q, �P, �. On the other hand

KQ 	 − 2�−1��Q − aB�P�, aB = ��2YB − 1� . �16�

Therefore the relaxation time of Q is � /2, it does not depend
on the distance to the bifurcation point. As a consequence, Q
follows P adiabatically, i.e., over time �� it adjusts to the
instantaneous value of P.

The adiabatic approximation can be applied also to fluc-
tuating systems. The approach is well known for classical
systems described by the Fokker-Planck equation �FPE� �24�.
Equation �9� describes quantum fluctuations and has higher-
order derivatives compared to an FPE. It turns out, however,
that �W can still be sought as a product of a Gaussian distri-

bution over �Q̃=�Q−aB�P and a function �̄W��P� that de-
scribes the distribution over �P. An equation for �̄W is ob-
tained by substituting �W into Eq. �9� and integrating over

�Q̃. This gives

�̇̄W 	 �P��̄W�PU + 
DB�P�̄W� , �17�

where U and D have the form

U =
1

3
b��P�3 −

1

2
�B

−1/2��P, � = � − �B,

DB = �−1
�n̄ +
1

2
� +

1

2
�ph�1 − YB�� �18�

with b=−�B
1/2�2YB�−1�1−2�2YB+�2�. In Eqs. �17� and �18�

we kept only the lowest order terms in �P, �−�B, 
. In
particular we dropped the term −
2QB�P

3 �̄W /4 which comes

from the operator L̂�2� in Eq. �9�. One can show that, for
typical ��P�����1/2, this term leads to corrections �� ,
 to
�̄W.

Equation �17� has a standard form of the equation for
classical diffusion in a potential U��P�, with diffusion coef-
ficient 
DB. For �b	0 the potential U has a minimum and a
maximum. They correspond to the stable and saddle states of
the oscillator. The distribution �W has a diffusion-broadened
peak at the stable state. Diffusion also leads to escape from
the stable state, i.e., to metastable decay. The decay rate W is
given by the Kramers theory �25�,

W = Ce−RA/
, RA =
21/2���3/2

3DB�b�1/2�B
3/4 , �19�

with prefactor C=�−1�b� /2�1/2�B
−1/4���� �in unscaled time t�.

Tunneling through the barrier U��P�, which would be af-

fected by the term �L̂�2�, can be disregarded.
The rate �19� displays activation dependence on the effec-

tive Planck constant 
. The characteristic quantum activation
energy RA scales with the distance to the bifurcation point
�=�−�B as �3/2. This scaling is independent of temperature.
However, the factor DB in RA displays a characteristic T
dependence. In the absence of dephasing we have
DB=1/2� for n̄�1, whereas DB=kT /��0� for n̄�1. In the
latter case the expression for W coincides with the result
�10�.

In the limit ��1 the activation energy �19� for the small-
amplitude state has the same form as in the range of � still
close but further away from the bifurcation point, where the
distance between quasienergy levels largely exceeds their
width �15�. We note that the exponent for tunneling between
the states with equal quasienergy scales as �5/4 �11�, which is
parametrically larger than �3/2 for small � �for comparison,
for a particle in a cubic potential �18� the tunneling exponent
in the strong-damping limit scales as � �14��.

For the large-amplitude state the quantum activation en-
ergy, Eq. �19�, displays different scaling from that further
away from the bifurcation point, where RA��1/2 for ��1
�15�. For this state we therefore expect a scaling crossover to
occur with varying �.

The approach to decay of vibrational states can be ex-
tended to a parametrically modulated oscillator. The Hamil-
tonian of such an oscillator is

H0�t� =
1

2
p2 +

1

2
q2��0

2 + F cos��Ft�� +
1

4
�q4. �20�

When the modulation frequency �F is close to 2�0, as a
result of parametric resonance the oscillator may have two
stable states of vibrations at frequency �F /2 �period-two
states� shifted in phase by � �18�. For F��0

2 the oscillator
dynamics is characterized by the dimensionless frequency
detuning �, effective Planck constant 
, and relaxation time
�,

� =
�F��F − 2�0�

F
, 
 =

3����
F�F

, � =
F

2�F�
. �21�

As before, 
 will be the small parameter of the theory.
Parametric excitation requires that the modulation be suf-

ficiently strong, �	1. For such � the bifurcation values of �
are

�B
�1,2� = � �1 − �−2�1/2, � 	 1. �22�

If �	0, as we assume, for �
�B
�1� the oscillator has one

stable state; the vibration amplitude is zero. As � increases
and reaches �B

�1� this state becomes unstable and there
emerge two stable period-two states �a supercritical pitchfork
bifurcation�. They remain stable for larger �. In addition,
when � reaches �B

�2� the zero-amplitude state also becomes
stable �a subcritical pitchfork bifurcation�. The case �
0 is
described by replacing �→−�.

The classical fluctuation-free dynamics for � close to �B
is controlled by one slow variable �23�. The analysis analo-
gous to that for the resonant case shows that, in the Wigner
representation, fluctuations are described by one-dimensional
diffusion in a potential, which in the present case is quartic in
the slow variable. The probability W of switching between
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the period-two states for small �−�B
�1� and the decay prob-

ability of the zero-amplitude state for small �−�B
�2� have the

form W=C exp�−RA /
� with

RA = ��B��2/2�2n̄ + 1�, � = � − �B �23�

��B=�B
�1,2��. The corresponding prefactors are CB

�2�=2CB
�1�

=21/2�−1��2��B���−�B�. We note that dephasing does not
affect the decay rate, to zeroth order in �−�B.

From Eq. �23�, at parametric resonance the quantum acti-
vation energy RA scales with the distance to the bifurcation
point as �2. In the limit ��1 the same expression as Eq. �23�
describes switching between period-two states still close but
further away from the bifurcation point, where the distance
between quasienergy levels largely exceeds their width. In
contrast, the exponent for tunneling decay in this case scales
as �3/2 �16�.

It follows from the above results that, both for resonant
and parametric modulation, close to bifurcation points decay
of metastable vibrational states occurs via quantum activa-
tion. The quantum activation energy is smaller than the tun-
neling action. Near bifurcation points these quantities be-

come parametrically different and scale as different powers
of the distance to the bifurcation point.

The exponent of the decay rate displays a characteristic
dependence on temperature. In the absence of dephasing, for
kT���0 we have standard thermal activation, RA�1/T. The
low-temperature limit is described by the same expression
with kT replaced by ��0 /2. Quantum activation imposes a
limit on the sensitivity of bifurcation amplifiers based on
modulated Josephson oscillators used for quantum measure-
ments �3�.

In conclusion, we have studied decay of metastable states
of forced vibrations of a quantum oscillator. Both energy
dissipation from coupling to a bath and noise-induced
dephasing were taken into account. We have found the expo-
nent and the prefactor in the decay rate near bifurcation
points. The quantum activation energy for resonantly excited
period-one states scales with the distance � to the bifurcation
point as �3/2, whereas for parametrically excited period-two
states it scales as �2.
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